Assimilation of AIRS CO₂ Observations with EnKF in a Carbon-Climate Model Junjie Liu, Inez Fung (UCB) Eugenia Kalnay, Ji-Sun Kang (UMD) Mous Chahine, Ed Olsen, Luke Chen (JPL) # Different CO₂ vertical gradient forecasts give different CO₂ flux - Numbers and characters are different transport models. - => Important to have accurate vertical mixing in the model; - => Accurate 4-D (x, y, z, t) CO₂ fields. #### Meteorology fields & CO₂ - Offline transport models have been used. - The initialization meteorology fields are from either reanalysis products (usually 6-hourly) or off-line dynamical model; - The vertical mixing has large uncertainty; - Single realization of meteorological field. #### **Research Goals** Generate 6-hourly 3-D (x, y, z) CO₂ fields by assimilating CO₂ and meteorological observations with full GCM #### **Carbon-Climate Model** - CO₂ is transported as a tracer; - Vertical mixing is updated every 30 minutes; - Land carbon flux: 6-hourly flux from biogeochemical model.5 ### **Ensemble Kalman Filter (EnKF) process** - Forecast error changes with time; - Obtain ensemble analyses. ### CO₂ Observation Operator - Model forecast x^b is CO₂ vertical profile; - AIRS CO₂ is column-weighted Volume Mixing Ratio (vmr); => observation operator: interpolate x^b to obs location & calculate model forecast column-weighted CO₂ vmr. $$\mathbf{y}^b = \mathbf{A}^T (\mathbf{S} (\mathbf{x}^b))$$ model forecast "obs" avg kernel spatial interpolator obs operator ### **Assimilation experiments** - Met-run: assimilate raw meteorological observations (10⁶ observations) - AIRS-run: assimilate AIRS CO₂ observations in conjunction with meteorological observations. # The impact of AIRS CO₂ assimilation on 6-hourly CO₂ 3D (x, y, z) fields - AIRS-run: AIRS CO₂+met obs; Met-run: only met obs. - The year of 2003. - Prescribed surface CO₂ flux forcing. # More than 2000 AIRS CO₂ within 6 hours; more sensitive in the middle troposphere ■ Averaging kernel: the sensitivity of AIRS CO₂ to CO₂ at each vertical level. ### Analysis corrections to CO₂ forecast peak at the similar levels as the peak of the averaging kernels ■ No CO₂ observations beyond 60°S. # Assimilating CO₂ adjusts CO₂ vertical gradient May 2003: CO₂(850hPa)-CO₂(400hPa) - In the NH, CO₂(850hPa)>CO₂(400hPa): fossil fuel+ land carbon source; - In the SH, CO₂(850hPa)<CO₂(400hPa): transported from the NH. # Assimilating CO₂ adjusts CO₂ vertical gradient May 2003: CO₂(850hPa)-CO₂(400hPa) - In the NH, CO₂(850hPa)>CO₂(400hPa): fossil fuel+ land carbon source; - In the SH, CO₂(850hPa)<CO₂(400hPa): transported from the NH. - Require CO₂ obs in the lower troposphere to further constrain gradient. # Inconsistent spatial distribution between AIRS CO₂ and ocean-air CO₂ flux #### Ocean-atmosphere CO₂ flux (unit: 10⁻⁹kgC/m²/s Takahashi et al., 2002) # Tropical AIRS CO₂ relates to circulation and averaging kernel #### Ocean-atmosphere CO₂ flux (unit: 10⁻⁹kgC/m²/s Takahashi et al., 2002) # Assimilating AIRS CO₂ improves spatial pattern # Consistent CO₂ distribution and weather pattern 500hPa geopotential height (contour) and CO₂ from AIRS-run (shaded) Simultaneous assimilation of meteorology variables and CO₂ generates CO₂ distribution consistent with weather pattern # CO₂ analysis spread ranges from 0.4ppm to 2ppm at 400hPa 400hPa monthly mean (September) CO₂ spread Average num of CO₂ observations at each grid box within 6 hours - Analysis ensemble spread is related to observation coverage, forecast error and observation error; - Larger spread over high latitudes, and over land; - Smaller spread over tropical ocean is due to observation coverage and propagation through forecast. ### Column-integrated CO₂—Sep ### Column-integrated CO₂—Oct ### Column-integrated CO₂—Nov # Assimilating AIRS CO₂ improves surface CO₂ seasonal cycle and the N-S gradient Surface obs: black; Met-run: red: AIRS-run: blue ### Mean NH CO2 concentration at 8 surface stations The N-S gradient based on 16 surface stations Met-run has similar NH CO2 concentration and the N-S gradient NOAA/ESRL website # Assimilating AIRS CO₂ improves CO₂ state estimate Verified against independent aircraft CO₂ observations ■ CO₂ from the AIRS-run can be about 1 ppm more accurate than those from the met-run. # Preliminary results on surface carbon flux estimation by assimilating AIRS CO2 # The impact of AIRS CO₂ assimilation on surface CO₂ flux LETKF: Local Ensemble Transform Kalman Filter (Hunt et al., 2007) - The carbon flux analysis acts as boundary forcing for the forecast of next time step. - Four and a half months assimilation cycles (01Jan2003-10May2003). - AIRS has the most impact over the tropical land - Stronger source in the NH winter - Stronger sink in the tropics and SH subtropics - Noisy over ocean compared to Takahashi #### February 2003 - Stronger source in the NH winter - Stronger sink in the tropics and SH subtropics - Noisy over ocean compared to Takahashi #### March 2003 Little change #### **April 2003** #### Little change #### May 2003 As in the OSSEs, the surface fluxes appear initially to be reasonable and then they "get stuck". ### Monthly average AIRS CO₂ does not change much over the tropical land from January to May #### **Conclusions - General** - EnKF brings important advantages for Reanalysis: - ✓ Analysis uncertainty - ✓ Adaptation to new observing systems - ✓ Estimation of obs. errors and identification of bad observations (not shown) - ✓ Estimation of model bias (essential) - For Carbon Reanalysis it is essential to assimilate at the same time meteorological and carbon observations #### **Conclusions - Simulations (OSSEs)** - The advantage of the OSSEs is that we know the true fluxes and CO2 - It is possible to estimate surface carbon fluxes from atmospheric CO2 measurements but - ✓ Need "variable localization" to reduce sampling errors - ✓ Need adaptive inflation of the B error covariance - ✓ Need to estimate model bias - Problem: the initial results after spinup from random fields are good, but then the surface fluxes "don't want to change anymore". - ✓ This is probably due to model bias #### **Conclusions - AIRS data assimilation** - AIRS CO2 data assimilation is clearly successful! - ✓ Improved atmospheric CO2 and N-S gradient - ✓ Better agreement with independent observations - ✓ Insight about vertical circulation and mixing - Preliminary estimations of carbon fluxes are very promising after one month spin-up: - ✓ Compared with CASA fluxes they yield reasonable uptakes in the SH summer and stronger emissions in the NH winter - ✓ But, like in the OSSEs, the fluxes "don't want to change" with season #### **Conclusions - AIRS/IASI GoSAT/OCO2** - The combination of satellite and in situ data is important: - ✓ Results are more accurate in NH than in SH - We need more near surface information - ✓ Carbon fluxes can be derived from atmospheric CO2 - Results depend on optimal forecast spread, a difficult problem for surface fluxes: - ✓ Work on estimating model bias - ✓ Should find why after initial good surface fluxes they "don't want to change" with season - ✓ We probably need to estimate diurnal and seasonal changes with a different approach (e.g., EOFs). ³⁵